
LYNX'S VOCABULARY

v 1 2019-10-21
© Logo Computer Systems Inc. 2019

All rights reserved Page 1

LYNX'S VOCABULARY

Lynx vocabulary 3

Primitives and procedures 3

Commands and reporters 3
Instructions 5

Words, numbers and lists 6

Delimiters 8

Space 8

Double quotation mark 8
Single quotation mark 9

Brackets 9

Punctuation 10

Colon 10

Comma 11
Parsing math instructions 12

v 1 2019-10-21
© Logo Computer Systems Inc. 2019

All rights reserved Page 2

Contents

LYNX'S VOCABULARY

The Lynx vocabulary comprises ALL the words that Lynx can understand.

PRIMITIVES AND PROCEDURES
Primitives are the vocabulary built-in for Lynx. These words
are always present and available for programming:
forward, xcor, setshape, print are all primitives.

Lynx’s vocabulary also includes some "dynamic" primitives
that exist only in relation to objects that you create. For
example, when you create a turtle "t1", the primitive "t1,"
also exists. When you create a text box "Text1", the
primitives "text1," and the primitive "text1" also exist.

A procedure is a group of instructions to which you give a
name. That name is added to Lynx's vocabulary, but only
while your project is open. It will not be available in another
project, unless you recreate that procedure. Square, for example, could be a procedure that
draws a square. It is certainly not in Lynx' built-in vocabulary.

COMMANDS AND REPORTERS

All these primitives and procedures can be of two types: commands and reporters.

A command just "does" something. For example, forward will make the turtle move forward -
forward 50 is a valid and complete instruction. Same for setshape 1, right 90, print
[Hi there!].

A reporter "reports" or "returns" something. But YOU HAVE to do something with what is
reported. Pos, for example, reports the turtle's current position - but just by itself, pos is not a
complete and valid instruction. You HAVE TO "catch" the result and do something with it. For
example, show pos is a valid and complete instruction. Pos reports the position, and show
"catches" that value to display it in the Command center.

v 1 2019-10-21
© Logo Computer Systems Inc. 2019

All rights reserved Page 3

LYNX'S VOCABULARY

The examples above are primitives. Procedures also are commands or reporters.

This procedure is a command. It does something, and it does not report anything:

to drawsquare
pendown
repeat 4 [forward 50 right 90]
end

You can use it as the first word of an instruction in the Command Centre:

drawsquare This simply draws a square on the page.

This procedure is a reporter. It reports something:

to squarenumber :x
output :x * :x
end

You can't use it as the first word of an instruction in the Command Centre. If you do, Lynx
displays an error message:

squarenumber 12
I don't know what to do with 144

Because it is a reporter, its value must be "caught" or "used" by another primitive or procedure
to its left:

show squarenumber 12
144 The result is printed in the Command Centre.
forward squarenumber 12 The turtle moves 144 steps forward.

v 1 2019-10-21
© Logo Computer Systems Inc. 2019

All rights reserved Page 4

INSTRUCTIONS

A Lynx instruction can comprise one word, or many words (built-in primitives or procedures
defined by you). However, the first word of an instruction MUST be a command, not a reporter.
Here's why:

Say you have a turtle and a text box on the page. Try these instructions in the Command centre:

In a way, you will write your instructions left to right, but at the end, you should read it right to left
to see if it is valid. ALL reporters report to the left. Here is an example:

In this example, you obviously write the instruction from left to right (A B C D) but Lynx reads it
right to left (D C B A): random 50 reports a random number (27) and "throws" it to the left. The
number 100 can do nothing by itself, so it throws itself to the left. Fortunately, list will "catch"
the numbers 100 and 27 because it needs two "things" to create a list - it creates the list[100
27] and throws that to the left as well. Finally, setpos needs a list of two numbers to set the
turtle's position, and it will gladly "catch" what was thrown by list. Everybody's happy!

forward 50 No problem, the first word (forward) is a command.

print "hello Good again. Print is a command.

pos
I don't know what to do
with 0 0

Here, you got an error message, because pos is a reporter. It reports
the turtle's current position, and you did not say what to do with that
value.

show pos
0 0

That's better. Show is a command. It "catches" the value reported by
pos, and it shows it in the Command centre.

random 100
I don't know what to do
with 67

Again, an error message. Random is a reporter, it reports a value
between 0 and 99 in this example. You don't say what to do with the
value (your value will be different).

forward random 100 Good! Random reports a value, and forward "catches" it because it
needs a value, and it is happy to use the number reported by
random. The turtle will move forward a random number of steps.

v 1 2019-10-21
© Logo Computer Systems Inc. 2019

All rights reserved Page 5

NUMBERS, WORDS AND LISTS

Before talking about numbers, words and lists, it is worth mentioning that Lynx has three
primitives talking about the "nature of things". They are number?, word? and list?. Just read
these examples and you will understand:

show number? 33.3
true
show number? pi
true
show word? 44 Yes, numbers are also words, but not the other way around.
true
show word? []
false
show list? [one [two three] four]
true

NUMBERS

Numbers are numbers... But there are a few things you ought to know about how Lynx sees
numbers. Say you have a text box on your page. Try these instructions:

print 50 This prints 50 in the text box.
print 0.50 This prints 0.5 in the text box.
print .50 This prints 0.5 in the text box. The leading 0 is optional.
print -50 This prints -50 in the text box.
print - 50 This results in an error message. No space between the minus sign

and the number.
print minus 50 This prints -50 in the text box.
print 5e3 This prints 5000 in the text box.

Note that numbers can be seen as a special kind of word. Word primitives will work on numbers:
show first 357
3

The symbol = works on words, numbers and lists:
show 'a' = first [a b c]
true

But some symbols only work with numbers:
show pi > 3
true

v 1 2019-10-21
© Logo Computer Systems Inc. 2019

All rights reserved Page 6

NUMBERS, WORDS AND LISTS

WORDS

All the primitives and procedures are obviously words. In fact, Lynx will interpret any word by
itself (not preceded by a quotation mark, a comma, a colon) as a primitive or a procedure, and it
will try to execute it.

Say you have a text box on your page. Type this instructions in the Command centre:
hello This creates an error message (I don't know how to hello)

because a word by itself is always interpreted as "something to
execute". If hello is not a procedure (it is certainly not a primitive),
Lynx will complain.

In the following examples, we use the double quotation mark to indicate that the word is... just a
word, not something to execute. See Punctuation and separators, further down, for more
options. Again, try these instructions:

print "hello This prints hello in the text box.
print first "hello This prints h in the text box, the first element of a word is a

letter.
print last "hello This prints o in the text box.
print butfirst "hello This prints ello in the text box, the whole word, minus the

first character.

LISTS

A list is a number of "things" enclosed within square brackets. The "things" can be words,
numbers, even other lists. Again, assuming you have a text box on the page, try these in the
Command centre:

print [hello] This prints hello in the text box. The list contains
one word.

print [hello there] The list contains two word.
print [a b 22 c] The list contains four elements.
print [a [x y z] b c] The list contains three elements, the second

element is a list.

You can build lists and extract elements from lists:

print first [hello] This prints hello in the text box. Hello is the first
(and only) element in the list.

print last [hello there] This prints there in the text box.
print butfirst [a b 22 c] The prints the entire list, minus the first element.
print item 2 [a [x y z] b c] This prints the second item of the list: [x y z].
print empty? [] This prints true in the text box.

v 1 2019-10-21
© Logo Computer Systems Inc. 2019

All rights reserved Page 7

DELIMITERS

In Lynx coding, delimiters include the space, the parenthesis, the single and the double
quotation mark, the vertical bar, and the square brackets.

SPACES

The space is very important in many places. Sometimes it's important to have one, and
sometimes it's important to NOT have any.

First, spaces are delimiters for words. That's why it's important to use single words when
creating procedures, naming turtles, creating variables, etc.

Naturally, you need a space between each command in an instruction (more than one space is
OK too!). In this example, note that there is also a space between the command back and its
input - back100 would not work:
if xcor > 100 [penup back 100]

and you need a space between each item in a list. In this example, make is used to create the
variable friends. The value of the variable is a list of four names.
make "friends [Kim Lea Sam Luc]

Spaces are important in math notation also. There is a section about that further down.

DOUBLE QUOTATION MARK
The double quotation mark indicates that the word is "just a word", not a primitive nor a
procedure, nor a variable. It is placed ahead of the word, not after. It is used to make "just one
word". In these examples:

print hello
make friends [Kim Lea Sam Luc]

hello and friends are words without any mark. Lynx will try to execute them as a primitive
or a procedure. This will generate an error message: I don't know how to hello.

This will work:

print "hello This prints hello in a text box.
make “friends [Kim Lea Sam Luc] This creates a variable named friends

and sets its value as a list of four names.

In the last example, you see that inside a list, words are not (and should not) be quoted.

GOOD BAD EXAMPLE

PROCEDURES big_square BigSquare
big.square

big square
big-square

to t1_click
big_square
end

TURTLES blue_boat BlueBoat
blue.boat

blue boat
blue-boat

blue_boat,
setheading 90

VARIABLES prev_score PrevScore
prev.score

prev score make "prev_score 0
show :prev_score

v 1 2019-10-21
© Logo Computer Systems Inc. 2019

All rights reserved Page 8

DELIMITERS

SINGLE QUOTATION MARK (AND VERTICAL BAR)

The single quotation mark, used on both sides of a word, also indicates that everything
between them is just a word. However, that word can contain spaces, and contrarily to lists,
multiple spaces are counted as multiple spaces.

Assuming you have a text box on your page, try these in the Command centre:

print 'hello there' This prints hello there in the text box.
print 'hello there' The four spaces are also printed.
print count 'hello there' This prints 13 in the text box. This is the number of

characters in this long word (5+3+5).
print [hello there] This will also print hello there in the text box, but the

three spaces have been "trimmed" to one.

See the difference?

• 'hello there' is a long word with eleven elements (or characters).
• [hello there] is a list with two elements (two words).

Vertical bars can also be used to encase multiple words in the same manner. You will have to
use the double quotation mark on the left, as such:

print "|hello there|

This is the same thing as:

print 'hello there'

BRACKETS

Brackets are used to create lists. See LISTS above. A list can be "just a list of things", or
"a list of instructions".

LIST OF THINGS

Brackets can be used to surround words and other lists - really anything. Here is an example:

make "data [cats dogs birds [reptiles and amphibians] fish]
print first :data
cats

LIST OF INSTRUCTIONS

A list of instructions is also enclosed within square brackets. However, this list must contain only
things that Lynx can execute. There is no difference for you when you type such a list... It's just
a list that is used with repeat, if, ifelse, forever. Here a few examples:

repeat 4 [forward 50 right 90]
if xcor > 100 [penup back 100 pendown]

forever [forward 2 setshape 1 wait 3 forward 2 setshape 2 wait 3]

v 1 2019-10-21
© Logo Computer Systems Inc. 2019

All rights reserved Page 9

PUNCTUATION - COLON

A colon, placed in front of a word, indicates that this is the name of a variable, not just a
word, not a primitive, not a procedure. When you type print :friends, you mean to
print the value of the variable friends.

Consider the name of a variable as a container. The primitive thing can also be used
to find out what is the "thing" in the container:

print :friends
is the same as:
print thing "friends

ANYWHERE

Once a variable is defined, the name of the variable, preceded by a colon, returns its value. Try
this in the Command centre. This example represents what's called a global variable, because it
maintains its value "all the time, no matter what":

make "friends [kim sam joe cat lea] That's how you create a global variable.
Notice the double quotation mark.

show :friends That's how you get the value of a variable. Notice
the colon.

show first :friends
kim
show empty? :friends
false

So generally it's QUOTE to create the variable, COLON to obtain its value.

ON A PROCEDURE TITLE LINE

A variable name appearing on a procedure's title line makes two things:

1. This procedure will now require an input, just like the primitive forward does. In this
example, you cannot execute the procedure square without providing a value for :size.

square
square needs more inputs in square
square 20
square 100

2. The name of the input (:size in this example) can be used anywhere in the
procedure.

spiral 10 90

v 1 2019-10-21
© Logo Computer Systems Inc. 2019

All rights reserved Page 10

PUNCTUATION - COMMA

In some cases, the comma has a special meaning for Lynx: placed after the name of a turtle or
a text box, it indicates that you "want to talk to it", just like you would say, IRL:
Sam, come here please! (notice the comma after Sam). This special comma feature applies
only to turtle names and text box names. In other circumstances, a comma is just a plain
character (you can define a procedure named Me,Pete,Kim).

Say you have three turtles and two text boxes on the page. The turtle t1 has been renamed
Roxy (right-click on a turtle to rename it. Use a single word, no space).

Try these instructions in the Command centre. Notice the comma following the name of the
turtle or the text box (no space):

t1, rt 90
text1, print "hello
text2, print "there
text1, cleartext

If you want to talk to more than one turtle at a time, use the command talkto instead of the
comma feature:

talkto [t2 roxy] No comma here!
left 90

Talkto can only used with turtles - not with text boxes.

v 1 2019-10-21
© Logo Computer Systems Inc. 2019

All rights reserved Page 11

PARSING MATH INSTRUCTIONS

Math instructions can be made using infix symbols and prefix primitives:

Infix symbols (symboles that go between numbers): *, /, +, -, <, >, =

The symbol "=" is a special case, it can be used with numbers, words and lists.

Prefix math operators (math operators that go before numbers): sum, difference, product,
quotient, remainder, sin, cos...

In many cases, you don't have to put spaces before and after math operators:

show 2+3
show 2 + 3
show 2+ 3

are the same, but

show 2 +3 isn't... This is not a math operation, this is a set of two numbers (2 and +3). So... to
avoid any issue with spacing, Lynx recommends that you always use spaces before and after
math operators; it is also much easier to read:

show (:size + 100) / 8

The order of priority for parsing operators is as follows:
1. *, /
2. +, -
3. <, >, =
4. Prefix primitives (sum, difference, product...)

Here is a complex example to illustrate this:

You can "force" a different order using parenthesis. Whatever is enclosed in parenthesis is
evaluated before anything else. When in doubt, use parenthesis. This also makes your code
easier to read and debug.

Note: Lynx will interpret 12.5 and 12,5 as the same value, but it will print them using the
decimal point (12.5)

v 1 2019-10-21
© Logo Computer Systems Inc. 2019

All rights reserved Page 12

	Contents

